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Abstract. The geometry of four-dimensional Kahler manifolds is discussed, and it is shown 
that the existence of a certain constant spinor enables one to obtain relations between the 
spectra of wave operators of different spins in an Einstein-Kahler space. This result can be 
regarded as a generalisation of one discovered recently by Hawking and Pope in spaces with 
half-flat Riemann tensor. 

1. Introduction 

There has been considerable interest in recent years in functional integral methods 
as applied to quantum gravity, quantum field theory on curved space-time back- 
grounds, and supergravity. In much of this work one begins by ‘Wick rotating’ to 
metrics of positive definite signature, in order to improve the convergence properties 
of the functional integral. In various applications, notably Hawking’s space-time foam 
picture of the gravitational vacuum (Hawking 1978), one is interested in background 
manifolds which are compact, with no boundaries (i.e. of finite volume), on which 
one then quantises matter or gravitational fields. At the one-loop level this amounts 
to calculating the determinants of the second-order operators governing the second 
variation of the action with respect to the various fields under consideration, in the 
curved space background which satisfies the classical field equations, i.e. Einstein’s 
equations. 

Unless one has examples of such compact manifolds, where an Einstein metric 
(for which Rub = Agub) is known explicitly, it is difficult in general to pursue the 
investigation very far. Explicit examples are in fact uncommon, amounting to S4, 
S 2  x S2, Page’s non-trivial Sz bundle over S 2 ,  S’ x S’ x S’ x S’, and Pz(@) (see, for 
example, Pope 1981a). One knows however that infinitely many compact Einstein 
manifolds exist, of arbitrarily great topological complexity. 

In an earlier paper (Hawking and Pope 1978a), it was shown how the assumption 
of self-duality or anti-self-duality of the Riemann tensor (Rabcd = f*Rabcd) leads to 
relations between the determinants of the wave operators for different spins, and in 
fact means that at the one-loop level the functional integral for supergravity reduces 
to a finite sum over the zero modes; all the non-zero modes cancel between bosons 
and fermions. This can be deduced without needing to know the explicit form of the 
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metric. Unfortunately K3 is really the only non-trivial compact self-dual space, and 
so the method is of limited applicability. 

The purpose of this paper is to show how in a much wider class of spaces one can 
deduce a lot about the determinants of the various wave operators without needing 
to know the metrics explicitly. These spaces are Kahler manifolds, and as will become 
clear the Einstein-Kahler condition can be regarded as a generalisation of the duality 
condition Rabcd = f*Rabcd. In fact when A = 0 the two conditions become identical. 
When A # 0 there are known to be infinitely many topologically inequivalent Einstein- 
Kahler manifolds. There are a few isolated cases with A >  0 (of which S 2  x S 2  and 
P2(C) are known explicitly, and may in fact be the only ones (e.g. Catenacci and Reina 
1979)), but the rest all have A < 0. 

The paper concentrates on the basic properties of Kahler and Einstein-Kahler 
manifolds rather than the applications to specific situations of physical interest. Some 
of these will be explored further in subsequent work. Much of the material is known 
already to mathematicians, but is presented here in a manner adapted to the notation 
of physicists. Section 2 begins by defining a Kahler manifold, and then discusses the 
exterior algebra of holomorphic and antiholomorphic forms, and shows how in four 
dimensions this is related to the language of two-component spinors. This relationship 
depends upon the existence of a certain gauge-covariantly constant spinor, and is 
really the essential feature of Kahler manifolds on which their special properties 
depend. In § 3 some topological properties are discussed, and the global question of 
the existence of spin structures and spin' structures. Section 4 is concerned with some 
local properties of the curvature of Kahler manifolds. In 0 5 relations are obtained 
between the eigenfunctions and eigenvalues of various wave operators of different 
spins in Kahler spaces satisfying the conditions R = constant or Rab = Agab; these are 
the analogues of the relations derived by Hawking and Pope (1978a) for half-flat 
spaces. In § 6 the zero modes of these operators are discussed, and in § 7 the eigenvalue 
relations are used to evaluate certain zeta functions for different spins. These provide 
a valuable check on the calculations in earlier sections. In § 8 some possible applica- 
tions are briefly discussed. 

2. Kahler manifolds 

We begin by defining an almost complex manifold as a real 2n-dimensional manifold 
M for which at each point x there exists a two-tensor .f (with components J a b )  which 
acts as an endomorphism on the tangent space and which is a complex structure for 
T,(M); i.e. j 2  = -1, or in components, J a J b c  = -Sa , .  .f is called the almost complex 
structure of M (Kobayashi and Nomizu 1969). 

The torsion of .f is defined by 

N ( X ,  Y )  = 2{[.fX, . f Y ]  - [X, Y ]  - . f [X,  . fY] - .f[ .fX, Y ] }  (2.1) 
wjere X and Y are arbitrary vectors and [X denotes the vector with components 
(JX)" = J a A b .  If the torsion vanishes then J is integrable; it is then called a complex 
structure for M, and M is a complex manifold. 

A Fiemannian metric g on M is said to be Hermitian if it is invariant by j; i.e. 
g(.fX, J Y )  = g(x, Y )  for all x and Y, or in component notation, g a d a J b d  = g f d .  An 
(almost) complex manifold is said to be an (almost) Hermitian manifold if it admits 
an Hermitian metric. If the upper index on .f is lowered using this metric, it follows 
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that the resulting tensor is antisymmetric, and may thus be regarded as a two-form. 
In a local orthonormal basis ea, we may therefore define the two-form J by 
J = $Jaben A e . 

A Kuhler manifold is an Hermitian manifold for which the two-form J is closed, 
dJ = 0. J is then called the Kuhler form. In fact it follows from the previous definitions 
that dJ = 0 implies that J is covariantly constant, VaJb, = 0. J is non-degenerate, and 

b 

J " = n ! E  (2.2) 

where J" denotes the wedge product of n J's ,  and E is the volume 2n-form (= *1= e' A 

e A .  . . A e2") of M. 
Instead of being regarded as a real 2n-dimensional manifold, M can equivalently 

be regarded as a complex manifold of dimension n. Thus one can write the metric 
in the alternative forms 

(2.3) 
where x ,  (g - 1,2n)  are local real coordinates, ea  (a = 1,2n)  is a local orthonormal 
basis of one-forms, ti (i = 1, n)  are local complex coordinates and z m  (m = 1, n)  is a 
local basis of complex one-forms, which might typically be related to ea  by 

2 

ds2 = g,, dx" dx" = e a  @ e a  = 2gi7 d l '  dp7 = z m  @ 2" 

Z m  = e m  +ienim, m = 1, n. (2.4) 

The way in which the real and the complex descriptions are related is given by 
the complex structure j .  Since j2 = -1, the eigenvalues of .f are *i. Vectors for 
which jX = iX or jX = -iX will be called holomorphic or antiholomorphic respec- 
tively. By using the metric this definition can be extended to one-forms also. Adopting 
the natural convention that the one-forms z m  defined by (2.4) are holomorphic, 
j ( z m )  = izm, and so using (2.4) the real components J a b  of .f may be determined. 

Because the basis forms z m  have been chosen to be holomorphic, an arbitrary 
holomorphic one-form w may be written as w =wmzm, and an antiholomorphic 
one-form 7 = 7m2m, so the bundle of one-forms A.' has been divided into two 
sub-bundles: A'*' of holomorphic one-forms and A".' of antiholomorphic one- 
forms. Similarly A', the bundle of r-forms, may be decomposed into sub-bundles A'.' 
of type (p, q)-forms (p +q = r), where an arbitrary (p, q)-form (Y is a sum of wedge 
products each involving p holomorphic and q antiholomorphic basis one-forms: 

(2.5) 

The usual exterior derivative d, which maps A'+Aril, may be decomposed as 

= m, ... m,n l . . . n , ~  A . . . A z m~ A 2"' A . . , A f n q .  

d = a + 3, where a : A',' + and z : A'," -P A'*'". From d2 = 0 it follows that 

a 2 = z 2 = , $ j + ~ a = o .  (2.6) 

(2.7) * ( e a l A .  . . ~ e ~ r ) = [ ( 2 n - r ) ! ] -  ~ ~ ~ . . . ~ , b ~ . . . b ~ , - , e  1 ~ .  . .r\eb2n-v. 

The * operator maps A' into A2"-', and A',' into An-',"-'. It is sometimes more 
convenient to define a new operator *, by * ( w )  = *6 which maps A'.' into An-'*"-'. 
Using this operator the adjoints of d, a and z, may be defined in terms of the Hodge 
inner product 

The Hodge * operator is defined, as usual, by 
1 b 
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where a, p E A."*'. Thus by definition 

(4, d4) = (d*4, 4)  (2.9) 

and similarly for a* and a*, where 4 and are forms of the appropriate types. Thus 
- -  - -  --- 

d* = -*d* = -*d*, a* = -*a* = -*a*, a* = -*a* = -*a*. (2.10) 

These effect the mappings d* : A' -* Ar-l, a* : A."" + A'-'*' , .  ;* * A'.' + II."~'-~. 
In this paper we shall be considering specifically the case of Kahler manifolds of 

four real dimensions, i.e. n = 2. This case is special because the * operator carries 
two-forms into two-forms; and it turns out that the Kahler form has the additional 
property of having a definite duality, either self-dual (J = *J)  or anti-self-dual (J = 
-*J). Reversing the orientation of the manifold interchanges the two cases, so without 
loss of generality we may take the Kahler form to be self-dual. 

To conform with standard relativity conventions, coordinate-basis indices 
a, p, . . . and local tetrad indices a, b, . . . will be taken ?o run from 0 to 3 rather than 
1 to 4. Where an explicit representation for J is required, we will determine it from 
the assignment 

(2.11) 1 0 3  2 1 2  z = e  + i e ,  z = e  + i e ,  

rather than (2.4). This then implies that J is given by 

J = e o  h e3+e1 h e', (2.12) 

which is indeed self-dual in the convention E0123 = + l .  
We now turn to the two-component spinor description of tensors and spinors in 

Riemannian four-manifolds, and the relationships between this and the complex forms 
discussed above. It is this connection between the two viewpoints which is really the 
crucial property of Kahler manifolds to be used in the rest of this,paper. 

In the Riemannian regime the local tetrad rotation group (i.e. in the tangent space) 
is S0(4),  which is isomorphic to SU(2) x SU(2)/Z2. Thus instead of regarding vectors 
(or one-forms) as objects with a single local tetrad index transforming under S0(4),  
one can instead associate them with objects possessing two indices, one transforming 
under one of the SU(2) groups and the other under the other. Given a one-form, 
V = V,e", we do this as follows: 

U = V A A , = ( ~ / J ~ ) ( V ~ + ~ V ~ ~ ~ ) ,  (2.13) 

where 7i are the Pauli matrices. Thus 

v2+iv1)* 

1 Vo+iV3 
( t, = VAA' = - 

J5 - v 2 + i v 1  ~ 0 - i ~ ~  
(2.14) 

We choose to regard the primed index as labelling rows, and the unprimed index as 
labelling columns. An arbitrary SO(4) rotation on V, is now expressible in terms of 
the left and right multiplication of U by certain SU(2) matrices. 

To make this isomorphism explicit, we introduce the set of three self-dual gen- 
erators of SO(4) J:: ( i  = 1 , 2 , 3 )  and three anti-self-dual generators J;: (*.T*' = fJ") 
defined by 

(2.15) f i  hi 
J o j  = T&,, J j k  = Ejjk. 
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Regarded as 4 x 4 matrices, they satisfy the quaternion algebra 

j t i j * i  = -sijl+ E i j ~ * k ,  (2.16) 

Writing the tetrad components V, of V as a column vector 

(2.17) 

an arbitrary SO(4) rotation U acts on V thus: 

V' = UV = exp(R ' J + i )  exp(L'J-') V, (2.18) 

where the three quantities R (L') are the coefficients of self-dual (anti-self-dual) 
rotations. 

On the other hand, this rotation corresponds to U' = avb, where v is the 2 X 2 
complex matrix defined by (2.14), and a and b are the SU(2) matrices: 

a = exp(il'.ri), b = exp(iR '7'). (2.19) 

The Z2 factor in the isomorphism SO(4) = SU(2) x SU(2)/Z2 is reflected in the fact 
that a and b can just as well be replaced by -a and 4, since SU(2) has Z2 as centre. 
Note that the left-hand SU(2) corresponds to anti-self-dual rotations, and the right- 
hand SU(2) corresponds to self-dual rotations. 

As well as 2 x 2 complex matrices v = VAAg which are isomorphic to vectors, one 
can consider also row vectors #A = (a, p )  and column vectors $A, = (r). These are 
known respectively as right-handed and left-handed spinors: 4~ transforms under 
SU(2)R and $AT under SU(2)=. Unlike the situation in the Lorentzian regime (e.g. 
Hawking and Pope 1978a), complex conjugation leaves unprimed spinors unprimed 
and primed spinors primed. There are antisymmetric metrics &AB for unprimed and 
E A ~ B *  for primed indices. These and their inverses may be used to raise and lower 
indices, e.g. 

The SU(2) norm 14A(2 may be defined by means of complex conjugation. When a 
spinor is complex conjugated a lower index becomes raised and vice versa, so one has 

A = 5 &AB, etc. 

/4A12 = (K)4A = JA4A 0, (2.20) 

equality implying dA=O. A positive definite norm for left-handed spinors may be 
defined in the same way. 

The usual Lorentzian signature two-component spinor conventions use a metric 
of signature ( + - - -)which 'Riemannianises' to a metricof negativedefinitesignature. 
In order to have a positive definite signature it is necessary to introduce certain minus 
signs into the usual conventions. In terms of the tetrad components used in (2.14) 
the Van de Waerden symbols (+,AA, which relate V, to VAA' = V,U,AA' are given by 

uaAA,  = (I/&~)(I, i7). (2.21) 

The orthonormal metric 8,b  is given in terms of U by 

(2.22) 

The minus sign in (2.22) means that one has to be slightly careful when transcribing 

AA' BB' = utj &AB&A'B'.  
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from tensor to spinor notation; for example 

V" W, = - vAA' wAA,. 

In the standard manner, one can introduce arbitrary multi-index spinors 
q 5 ~ ~ , . . A ~ , ~ i . , . ~ i ,  with 2m unprimed and 2n primed indices. If q5 is totally symmetrised 
over unprimed indices and also over primed indices, then it is in the (2m+1)  
(2n + 1)-dimensional (n, m) irreducible representation of SO(4). Thus left- and right- 
hand spinors are respectively in the ($, 0) and (0 ,  ;) representations, and vectors are 
in the (5, $) representation. The cases ( 1 , O )  and (0, 1) correspond respectively to 
anti-self-dual and self-dual two-forms; i.e. anti-self-dual two-forms are represented 
by symmetric two-index primed spinors JA'B' and self-dual two-forms by symmetric 
unprimed spinors q5AB. Adopting the usual convention in which the presence of 
Van der Waerden symbols is understood, one can write an arbitrary two-form 
@ = $@"bea A e b  as the sum of its self-dual and anti-self-dual parts: 

(2.23) 

In order to investigate the relationship between holomorphic or antiholomorphic 
forms and two-component spinors, we first need to establish the existence of a certain 
right-handed spinor U A ,  which has the property of being gauge-covariantly constant, 
DauA = 0, where D, = V, -ieA,, and A is a connection on a certain U( l )  bundle. The 
object ( ~ " ~ ~ z i i ~  then maps between left-handed spinors and one-forms, and it will 
turn out that the one-forms are antiholomorphic, i.e. elements of A','. It will also 
turn out that right-hand spinors are associated with certain elements of AoV0 and 

To begin with, we will consider an arbitrary four-dimensional Riemannian space 
and introduce another covariant derivative, ga, defined as follows. The self-dual 
generators JZL are not, in general, covariantly constant; but one can easily show that 

(2.24) 

1' 
@ab = h A B & A ' B '  + fbA'B'&AB. 

+ j  + k  VJi; + & , j k A c  J a b  = 0 ,  

(2.25) 

Wab being the connection one-forms defined by de" = - W a b  A eb ,  U ( & )  = 0. Equation 
(2.24) is therefore just the statement that J+',b is gauge-covariantly constant with 
respect to the derivative 9" which involves a minimally coupled SU(2) Yang-Mills 
gauge field with connection (2.25); 9,& = 0. The curvature of this connection (i.e. 
the Yang-Mills field strength) is easily shown to be 

(2.26) 

where @ab are the curvature two-forms defined by @ab = d W a b  +wac A Web. One can of 
course do the same thing with the anti-self-dual generators JiL. It is interesting to 
note that (2.26) and the anti-self-dual analogue are just the Yang-Mills fields discussed 
by Charap and Duff (1977); they are nothing more than the curvatures of the right- 
and left-hand spin bundles. 

The next stage in the argument is to look at the holonomy group for the general 
four-manifold, by considering the parallel propagation of vectors, and then spinors, 
around closed loops. If one parallel propagates V" around a small loop of area axab, 
then as is well known, 

S V " = - R a b c d 6 Z c d V b .  (2.27) 

F+' =  jab +' @ab, 
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This may also be written as 

6V" = (SR'JZL +6LiJiL)Vb, (2.28) 

since clearly the final vector is just an SO(4) rotation of the initial one. Straightforward 
algebra then shows that 

6 ~ '  = -1 2Fab6Zab, + i  SL' = -&iLSZab, (2.29) 

Thus for a loop of any size spanned by a two-surface C, one can write 

V' = exp(R 'JCi) exp(L'J-') V, (2.30) 

where we are now using the matrix notation of equation (2.18). As discussed pre- 
viously, a right-handed spinor 4 (a row vector) and a left-handed spinor @ (a column 
vector) will sufier rotations 

4' = 4 exp(iR 'T~), 4' = exp(iLiTi)@. (2.31) 

Because the curvatures F* take values in a non-abelian group, one cannot simply 
integrate (2.29) to give 

(2.32) 

However it will turn out that in the case of a Kahler manifold the right-hand spin 
bundle is a U(l )  bundle rather than SU(2), for which case equation (2.32) for R ' is valid. 

We now come to the crucial property of Kahler spaces: the self-dual part of the 
SO(4) rotation, R 'J+', instead of generating su(2)R rotations, in fact collapses down 
to just B J  where 8 is a single parameter and J is the Kahler form (self-dual). In other 
words, right-handed spinors suffer only U( 1) rotations when parallel transported 
around closed curves. 

To see this, define the isovector scalar 4' by 

4 f = L  4Jab +1 Jab. (2.33) 

This satisfies 4 '4 = 1, and since Jab is covariantly constant, and JZL is gauge-covariantly 
constant with respect to ga, it follows that ga4' = 0. Taking a commutator of second 
derivatives then implies F;Lq5jeiik = 0 and hence F;: = 4'Pab for some Pab. Inverting 
this relation shows that 

p a 6  = fRnbcdJcd, (2.34) 

One can in fact choose a gauge in which R 1  = R 2  = 0, and so equation (2.29) for 
a two-form known as the Ricci form in a Kahler manifold. 

R '  can now be integrated to give 

R 'J+' = R 3  J+3 = eJ, e = -1 2 ,  I,. (2.35) 

where P= iPabea A e b  and C is any two-surface spanning the closed path. From (2.31) 
a right-handed spinor q5 suffers a rotation 

(2.36) 

Thus a right-handed spinor is rotated by a U(1) subgroup of the su(2)R factor in 
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S0(4)=SU(2)LxSU(2)R/Zz. In fact, this shows that the holonomy group for a 
four real dimensional Kahler manifold is SU(2) x U(1)/Z2 = U(2), which is an alterna- 
tive way of defining a Kahler manifold (Kobayashi and Nomizu 1969). 

In order to find a gauge-covariant constant spinor U A  it is necessary to find some 
way of 'undoing' the rotation of equation (2.36) so that the spinor is left unrotated after 
parallel propagation around all possible closed loops. The fact that the rotation (2.36) 
is just a U(l )  subgroup of SU(2) immediately suggests how this might be achieved; 
by giving uA an electric charge and minimally coupling it to some suitable U ( l )  gauge 
field (i.e. Maxwell field). Let us therefore introduce the covariant derivative D, = 
V, -ieA,, with dA = F, and look for an F which achieves the required result. 

The effect of gauge-parallel propagating the spinor Cp around a closed loop in the 
presence of this U(1) gauge field will be to introduce an extra phase factor into (2.36), 
giving 

(2.37) 

where as before, 8 = -ij,P, and P is the Ricci form (2.34). Clearly therefore if we 
choose F so that lcP = 2e IcF for all paths, then any right-handed spinor q5 = (0, p )  
will be unrotated, or if we choose scP = -2e I,F, then any right-handed spinor 
Cp = (a, 0) will be unrotated. But this is just the condition 

F a b  = *(1/2e)Pab, (2.38) 

so by gauge coupling Cp to a suitable multiple of the Ricci form, a gauge-covariantly 
constant spinor can be found. Since the norm (equation (2.20)) of such a spinor must 
be constant, that means that a and p must be constants, so the spinor may without 
loss of generality be taken to be uA = (0, 1) or U A  = ( 1 , O )  respectively, depending on 
the choice of sign in (2.38). 

Choosing the case F = +(1/2e)P, so U A  = (0, l), it follows that EA = (-1, 0), SO as 
one would expect CA is gauge-covariantly constant also, with charge -e. One can 
now show by using the Van der Waerden symbols (2.21) to transcribe the Kahler 
form J (see equation (2.12)) from spinor form to tensor form, J a b  = JAA'BB~ = ~ J A B E A ~ B , ,  
that it may be written as 

J A B  = 2i(uAGB + uBG.4). (2.39) 

(Being self-dual, the spinor transcription of Jab involves only JAB, and not JAsB,,  see 
equation (2.23).) It is immediately clear from (2.39) that J is covariantly constant, 
since it is made from products of two gauge-covariantly constant spinors, one having 
charge +e  and the other -e. 

The vector space of right-handed spinors is two dimensional, and so is spanned 
by the pair of spinors (uA, GA) ,  which may therefore be taken as a basis for the space. 
The antisymmetric metric EAB may be written as 

EAB = UACB - M E G A .  (2.40) 

We are now in a position to discuss the isomorphism between spinors and anti- 
holomorphic forms (the fact that the forms are antiholomorphic rather than holomor- 
phic is the result of convention only, and is chosen to agree with the standard literature, 
e.g. Wells (1979)). Consider an arbitrary left-handed spinor (LA' ,  and convert it into 
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a one-form w by contracting it into u a ~ ~ , i i A :  

wa = uaaa'iiA*A', or W A A ~  = E A ~ A , .  (2.41) 

Remembering that one-forms for which J ( w )  = +iw or -iw are respectively holomor- 
phic or antiholomorphic, where (Jw),  = J,bwb, we evaluate J ( w )  and find 

J(w)AA'  = -ifiA+A' = -iWAA', (2.42) 

so w defined by (2.41) is an antiholomorphic one-form, w E A',' (clearly if u A  were 
used in (2.41) rather than EA,  w would be holomorphic). 

there are two ways of using i i ~  to 
associate antiholomorphic forms with $J~. One is to contract the index, giving a 
zero-form The other is to construct the self-dual two-form U 'with spinor 
transcription 6 ~ 4 ~  + i i ~ 4 ~ .  Now 4A may be expanded as 4~ = auA + biiA, so this 
two-form is given by Vab = ZUABEA'B-, where 

Turning now to a right-handed spinor 

1 

UAB = a(fiAUB -t f i ~ U ~ ) + 2 b i i ~ i i ~  =-&JAB + 2 b E ~ i i ~ .  (2.43) 

In view of (2.42),  which showed that an unprimed index on EA together with a primed 
index on any spinor constitutes an antiholomorphic one-form index (holomorphic if 
uA is used instead of CA), we see that the term in Y involving UJAB is an element of 

, and the term involving biiAiiB is an element of ~ ' 9 ~ .  But b=-uA4A,  so in 
other words there is a natural isomorphism between a right-handed spinor d A  and 
the element of A'" which contains the C A  projection of c $ ~ ,  and the element 
- U ~ C $ & A Z ~ B E A , B ,  of which contains the u A  projection of q5*. Thus denoting 
the left- and right-hand spin bundles by S -  and S' respectively, we have 

Al.1 

9 (2.44) s- E ~ 0 . 1  E Aodd s+ E A O B ~  A092 Aeven. 

It is now apparent that there is at least a formal similarity between the Dirac 
operator, which interchanges the right- and left-handed spin bundles, and the anti- 
holomorphic exterior derivative ? and its adjoint ?*, which interchange Aodd and A'"'''. 
In fact, a straightforward calculation shows that the charged Dirac operator, which 
acts on 4 A  E S' or +A, E S -  by 

D A A ~ C $ ~  E s-, D A A , $ ~ ' E  s', (2.45) 

is isomorphic to the operator Jz(?+?*) acting on the direct sum of A'*' forms = AoddO 
neve'' (Hitchin 1974). This may be expressed in the following commutative diagram: 

DAA. $ $ JZ(?+ i * )  (2.46) 

S -  Aodd 

s + Aeven 

The operators ? and ?* are now in general taken to act on forms which are charged, 
and so for reasons of clarity we introduce three gauged exterior derivative operators 
D, D' and D- to generalise d, a and ? respectively, where 

D = D' + D- = d - ienA, (2.47) 

and A' and A- are the holomorphic and antiholomorphic parts of the connection A 
on the U(l)  fibres, and ne is the charge of the forms on which the derivatives are 
acting. n u s  D+ : A P * ~  + ~ p + ' * q ,  D- : ~ p . 4  + ~ P * q + l  . In the case of uncharged forms, these 

D+ = a - ienA', D- = ? - ienA-, 
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new derivatives reduce to the preview ones. In terms of these, the operator isomorphic 
to the charged Dirac operator is J2(D- + D-*). 

In Q 5 we will make use of the results discussed above to obtain relations between 
the eigenfunctions of the Hodge-de Rham Laplacians in different irreducible rep- 
resentations of S0(4), i.e. for wave operators of different spins (see, for example, 
Christensen and Duff 1979), and show how the various eigenvalue spectra are related 
in an Einstein-Kahler background. 

We conclude this section by investigating the structure of self-dual (A?) and 
anti-self-dual (A!) two-forms in terms of the three elements in the direct sum A' = A?@ 
A? = A2*o@A'"@A0'2. Beginning with anti-self-dual two-forms, these have the spinor 
transcription ~ J A ' B ' E A B  for some 6Acst (see equation (2.23)), and so by virtue of (2.40), 
(2.41) and (2.42), all such two-forms have one holomorphic and one antiholomorphic 
index, and so lie in A','. Self-dual two-forms have the spinor transcription ~ ~ A B E A ' B ' ,  

which can be rewritten as (CUUAUB + P z I A ~ B  + Y U ( A ~ B ) ) E A , B * ,  since UAUB,  ~ A Z ~ B  and 
~ ( ~ 6 ~ )  span the space of symmetric two-index unprimed spinors. The first term clearly 
lies in A',', the second in AoS2 and the third, which is proportional to JABEA~B,, lies in 
A','. Thus we can write 

(2.48) 

where A:,' denotes the subspace of A',' proportional to J, the Kahler form, and A:' 
denotes the orthogonal complement: A"' = A?' @A>'.  

The two-forms whose spinor equivalents are proportional to UAUB and CAEB will 
be used repeatedly in later sections, so we will make the following definition. Let 
K = iKabea A e b  be the following self-dual two-form: 

K a b  = ~KABEA'B', KAB = 4uAuB, (2.49) 

and let L =E,  the complex conjugate of K. Converting into tensor notation by using 
the Van de Waerden symbols (2.21), one finds 

K = i(eo A e ' + e' A e 3 ,  - ( e o  A e' + e3  A e ') = iz ' A z 2 ,  

L = -i(eo A e ' + e 2  A e3)- (e9h e 2 + e 3  A e') = -if' A f 2 ,  
(2.50) 

so that as expected, K E A',' and L E  AoSz. For completeness, we also note that in the 
complex basis (z', z'), the Kahler form J (see equation (2.7)) is given by 

J = &z' A 2 ' + z 2  A 2) (2.51) 

3. Some topological properties of four-dimensional Kahler manifolds 

We begin by recalling some facts about the Chern classes of a complex vector bundle. 
A more detailed discussion intended for physicists can be found in the excellent 
review article by Eguchi el a1 (1980). The Chern form of a complex vector bundle 
E with connection r over a manifold M is defined as 

(3.1) 

where R is the curvature two-form of the bundle, and the Chern forms cj(R) are 
polynomials of degree j in R. In the case of four dimensions the series terminates 

c(R) = det[l+ ( i / 2 ~ ) R ]  = 1 + cl(0)  + cz(R) +. . . , 
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with c2, and one has 

c1 = (i/27~) Tr s1, 
c2 = (87r2)-'(Tr s1 A $2 -Tr s1 A Tr 0). 

(3.2) 

(3.3) 

The Chern forms cj(sl) are closed, dcj(R) = 0, and define 2jth cohomology classes. 
These classes are in fact integer classes H2'(M, Z), so if cj(sl) is integrated over any 
2j  cycle, the result is an integer. 

In one integrates c1 A c1, or c2, over M, then one obtains the first or second Chern 
numbers, C: or C,, which are integer topological invariants, 

c 

One defines the Chern classes of a complex manifold to be the Chern classes of 
its complex tangent space, which in a Kahler manifold means that the matrix of 
curvature two-forms R in (3.1) is that obtained from the usual curvature two-forms 
@ab by projecting out the holomorphic part of one index, and the antiholomorphic 
part of the other: 

f l a b  = :(sac + g a c ) ( s b d  - g b d ) @ c d *  (3.5) 

Hence Tr s1 = &&@ab = -iP (see (2.34)), where P is the Ricci form, and Tr 
$ TrO A 0. Therefore c1 and c2 are given by 

A a= 

1 
1 6 7 ~ ~  8 7 ~  

Tr @ A 0 + y p  A P. c2 = - 1 1 
27T 

c1= -P, 

From (3.4), one therefore has 

(3.6) 

(3.7) 

But C2, being the highest Chern number in four real dimensions, is equal to the 
Euler number x, and JTr 0 A O is proportional to the Hirzebruch signature, 7, which 
is also a topological invariant: 

so one has the relation 

2x + 37 = c: (3.9) 
which holds in any Kahler manifold of dimension four. 

the Betti numbers 6,: 
The Euler number, x, of a four-manifold can be defined as the alternating sum of 

(3.10) 

where 6, is the dimension of the rth cohomology class H'(M, W), i.e. the number of 
independent closed but inexact r-forms (do = 0, o # da). The cohomology class in 
the middle dimension, i.e. H2(M, W) in four dimensions, may be split into its self-dual 
and anti-self-dual parts, and defining the dimensions of these to be 6:  and 6;  
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respectively (b: + b i  = b2),  the Hirzebruch signature is 

r=b: -bT. (3.11) 

The Euler number may be shown, in the case of a compact four-manifold without 
boundary, to be given by 

(3.12) 

and the Hirzebruch signature is given by equation (3.8). 
Because in a Kahler manifold the bundle of r-forms A' splits as the direct sum 

A' = Zp+q=rAP*4, the cohomology classes H'(M, R) can be subdivided into HP*'(M, R), 
p + q = r, HP*'(M, R) having dimension hp,q, so b, = Z p + 4 = r h p * 4 .  One can easily show 
that in terms of these, 

(3.13) 
P.4 P.4 

There is another topological invariant which may be defined, namely the arithmetic 
genus a : 

(3.14) 

It follows by complex conjugation that hP*' = h4'?', and by Hodge duality that hPSq = 
, and using these relations it is easy to see from (3.13) and (3.14) that 

(3.15) 

Writing (3.14) as a = h0"+ h"*2- hO*l, one sees that it is just he""- hodd in the language 
of (2.44), and hence by virtue of the isomorphism between spinors and antiholomorphic 
forms, a is also the index of the charged Dirac operator DAA'; the excess of right- 
handed over left-handed normalisable solutions of the Dirac equation. 

That the arithmetic genus is equal to the Dirac index may also be seen directly, 
by using the Atiyah-Singer index theorem (e.g. Eguchi et a l  1980). For the charged 
Dirac operator, this states that 

h2-4~2-P 

a =i(x + T )  = &(x + C ? ) .  

e' 
877 

Tr 0 A 0 +- F A F, 1 n + - n - = -  
1 9 2 ~ ~  ]I, (3.16) 

where n+ and n- are the numbers of right- and left-handed square integrable solutions 
of the charged Dirac equation. Substituting F = (1/2e)P and using (3.7), (3.8) and 
(3.9), one recovers the result that n+ - n- =a(, + T ) ,  which by (3.15) is the arithmetic 
genus, 

So far in the discussion of spinors we have not considered the global question of 
whether the manifold M admits a spin structure; i.e. of whether it is possible to define 
spinors globally. The reason in general why a manifold might fail to admit a spin 
structure is related to the fact that in N dimensions the group Spin(N) of local spinor 
rotations is the double cover of SO(N), the group of local tangent space rotations. In 
the case of four dimensions, Spin(4) I= S u ( 2 ) ~  x S U ( ~ ) R ,  where as discussed previously, 
SU(2)= and SU(2)R act on left-handed and right-handed spinors respectively. 

If there is a closed two-surface Y in M which cannot be contracted to zero, then 
when a vector is parallelly propagated around a one-parameter family of closed curves 
spanning Y, the two vectors obtained by propagating around the two trivial curves in 
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the family are identical. On the other hand, when the same thing is done for spinors, 
the two spinors may either be identical, in which case the manifold admits a spin 
structure, or they may differ by a factor of -1, in which case it does not admit a spin 
structure. In a four-dimensional Kahler manifold we may look at this in detail by 
returning to equation (2.36), which gives the rotation which a right-handed spinor 4 
(a two-element row vector) undergoes when parallel-transported around a closed 
curve spanned by a two-surface C. Thus the two spinors d1 and d2 obtained by 
parallel propagation around the two trivial curves in a family spanning a closed 
two-surface Y are related by 

(3.17) 

However, by equation (3.6), f3=-7rlYcl, where c1 is the first Chern class of the 
complex tangent bundle. Since c1 defines an integer cohomology class Hz(M, Z), its 
integral over any two-cycle Y gives an integer, and so it follows from (3.17) that 
either Jycl = even integer and q5z = q51, or jycl  =odd integer and 4z = -41. Thus the 
condition for the manifold to admit a spin structure is that jycl = even integer. In fact 
the mod 2 reduction of the first Chern class is the second Stiefel-Whitney class Wz, 
so M admits a spin structure if and only if WZ vanishes. Thus we have reproduced 
a well known result of differential geometry (e.g. Eguchi et a1 1980). (It follows of 
course, since the product of a left-handed and a right-handed spinor gives a vector- 
which can always be globally defined-that the existence or non-existence of a 
right-handed spin structure implies the same for left-handed spinors.) 

The foregoing discussion was for the case of uncharged spinors. If we now consider 
instead the charged spinors introduced in Q 2, coupled to the electromagnetic field 
F = (1/2e)/P, the situation is very different. In this case it follows from equation 
(2.37) that the two spinors 41 and (b2 will be related by 

) q52=41( 1 
exp(2ri J c1) o 

(3.18) 

and so q51=q52 regardless of whether j y c l  is an even or odd integer. What has 
happened is that in the case where Jycl is odd, the electromagnetic field has introduced 
a phase factor of -1 in order to restore the equality of q51 and &. This is known as 
a spin' structure, and we see from (3.18) that such a structure always exists in a 
four-dimensional Kahler manifold. 

4. The curvature of Kahler four-manifolds 

The fact that the holonomy group for right-handed spinors is U(1) rather than SU(2) 
shows that the right-handed curvature of a four-dimensional Kahler manifold has a 
special form. In order to discuss this it is convenient to use the two-component spinor 
description of the curvature. To do this, we first break up the Riemann tensor into 
its SO(4) irreducible parts: the Weyl tensor Cabcd, the tracefree Ricci tensor Eab and 
the Ricci scalar R : 

Rabcd = Cabcd + 2 E ~ ~ b S c ~ d 1  + $RS~a[bSc~dl, (4.1) 

where Eab = Rab -iRg,,. The Weyl tensor may be divided into its self-dual and 
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anti-self-dual parts, Cabcd = +Cabcd + -Cabcd, where *Cab& = i ( c a b c d  f *Cabcd) ,  *Cabcd = 
1 
?&ab&fcd. The spinor transcriptions of these tensors are 

+Cabcd = qABCD&A'B'&C'D' ,  ~ A B C D  = ~ ( A B C D ) ,  ( 4 . 2 )  

-Cabcd = @A'B'C'D'&AB&CD, ~ A , B , c ' D ,  = ~ ( A , B + C L S ) ,  ( 4 . 3 )  

E a b  = 2@ABA'B',  @ABA'B' = @(AB)(A'B') .  ( 4 . 4 )  

The conventions are such that the commutator [VAA', V B B ' ]  applied to arbitrary 
spinors fc, ic, gives 

[VAA', VBB'] tCC'  = (@A'B 'C 'D'E -D' -&Rt(A '&B')C ' )&AB + @ABC'D ' iD '&A'B ' .  
( 4 . 5 )  

( 4 . 6 )  

The Einstein condition Rab = figab is equivalent to Eab = 0, or @ABA'B' = 0,  with 
R = 4A. The half-flat condition, Rabcd = **Rabcd2 which automatically implies R,b = 0 
(or equivalently Eab = 0 = R ) ,  corresponds to '€'A'B,c*D, = 0 if Rabcd is self-dual, or 
'PABcD = 0 if Rabcd is anti-self-dual. 

By applying the commutator [VAA., V B B ' ]  to the covariantly constant Kahler form 
JCD, one can show that the right-handed Weyl tensor in a Kahler manifold is given by 

(4.7) 

where the second equality follows from ( 2 . 3 9 ) .  This shows that the right-handed Weyl 
tensor is of Petrov type D. The Kahler condition implies no restriction on the 
left-handed Weyl tensor. In tensor notation, the right-handed Weyl tensor takes the 
form 

+ c a b c d  = &R (xabcd - G a b c d ) ,  ( 4 . 8 )  

Gabcd = gacgbd - gadgbc, xabcd  = J a J b d  - J a d b c  2 J a J c d .  ( 4  * 9 )  

D [VAA', v B B ' l 8 C  = ( q A B C D f D  - & R f ( A & B ) C ) & A ' B ' +  @CDA'B'6 &AB, 

1 1 
~ A B C D  = ~ R J ( A B J c D )  = -TRU(AUBJCJD), 

where G and X. are defined by 

The expression [v,, V b l J c d  = 0 implies that the Riemann tensor satisfies the relation 

R a b c d  = R a b e f J e c J f d ,  ( 4 . 1 0 )  

from which it follows that the Ricci form Pab,  defined by ( 2 . 3 4 ) ,  may also be written 
as 

Pab = R a c  Jcb. ( 4 . 1 1 )  

In spinor notation, this becomes 
1' 

Pab = $PAB&A'B' + TPA'B'&AB, 
( 4 . 1 2 )  

Thus if the Einstein condition Rab = Agab holds, the Ricci form is self-dual, and in 
fact is just Nab. 

It is useful when considering Kahler manifolds to introduce the concept of holomor- 
phic sectional curvature. We begin by defining the sectional curvature on two-planes 
p at the point x in a Riemannian manifold M by 

( 4 . 1 3 )  

A B  PAB = iRJAB, FA'B' = @ABA'B*J . 

K ( p )  = R ( X ,  y, x, Y ) ,  
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where X and Y are a pair of orthonormal vectors spanning p ,  and R(X, Y, 2, W )  = 
RabcdXnYbZcWd (Kobayashi and Nomizu 1969). One can easily show that K ( p )  is 
independent of the choice of orthonormal basis (X ,  Y ) .  

The holomorphic sectional curvature of a Kahler manifold is defined to be the 
sectional curvature on p at x E M for all planes p invariant by the complex structure 
.f; i.e. for which if (X, Y )  is an orthonormal basis, then so is ( . fX, . fY) ,  where 
(.fX). = , “ a b .  If X is a unit vector in p ,  and p is a holomorphic two-plane, then 
( X , . f X )  is always an orthonormal basis for p ,  and so the holomorphic sectional 
curvature is given by 

K&) = R (X ,  fX, X,  . fX) .  (4.14) 

The manifold is said to have constant holomorphic Sectional curvature if K H ( p )  
is independent of the choice of two-plane at x.  It is then straightforward to show that 
this implies that M is an Einstein space, Rab = figab, with Riemann tensor given by 

Rabcd = h(Gabcd + x a b c d ) ,  (4.15) 

where G and X are defined in equation (4.9). From this it follows that the Weyl 
tensor is self-dual, so -Cabcd = 0. One can conversely show that a Kahler manifold 
with self-dual Weyl tensor satisfies R = constant. If in addition it is Einstein, then it 
has constant holomorphic sectional curvature. 

It is natural then in a general Kahler four-manifold to define a tensor Tab& by 

Tabcd = Rabcd - h (Gabcd E a b c d ) ,  

from which it follows, since IITabcdl(’ 3 0, that 

(4.16) 

IIRabcdIl’ 2 $R ’9 (4.17) 

equality holding if and only if M has constant holomorphic sectional curvature. 
Substituting this into the expressions in § 3 for x,  7 and C: gives the result that in 
an Einstein-Kahler manifold, 

X b 3 7 .  (4.18) 

Once again, this inequality is saturated by the constant holomorphic sectional curvature 
condition. An example of such a manifold is P2(@), the complex projective plane, 
which admits an Einstein-Kahler metric (e.g. Eguchi and Freund 1976, Gibbons and 
Pope 1978). It has ,y = 3, 7 = 1. 

Finally in this section we consider the circumstances under which a Kahler metric 
can be regarded as an exact solution of the Einstein-Maxwell equations, with Maxwell 
field F = (1/2e)P. Clearly any Einstein-Kahler solution may be so regarded, since 
then P = AJ, so F not only satisfies Maxwell’s equations, but is self-dual and therefore 
its energy-momentum tensor vanishes. In fact the necessary and sufficient condition 
turns out to be R =positive constant. To see this, start from the Einstein-Maxwell 
Lagrangian 

1 
I = - - - .  J (R -2h)*1 +a J Fasab*1 ,  (4.19) 

2K2 M M 

which implies the classical field equations 

R =4A, Eab = K ’ Tab, d*F = 0, (4.20) 
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where Tab is the (tracefree) electromagnetic stress-tensor 

Tab = F a c F b c  -$IIFcdIJ2gab = 2+FaLFbc. 

NOW P a b  = $RJab 4- -Pab, SO from (4.1 1) it fOllOWS that 

E a b  = (4/R )+pac-pbc- 

However F = (1/2e)P, so (4.20) and (4.21) imply 

(4.21) 

(4.22) 

and so equating (4.22) and (4.23) gives 

2e2 = AK'. (4.24) 

It remains to check that the third equation in (4.20) is satisfied, d*F = 0, or equivalently 
VaFab = 0. From (4.11) and the contracted Bianchi identity, it follows that VaFab = 
(1/4e)(VaR)Jab, and so d*F = 0 if and only if R = constant, which is already guaranteed 
by the first equation in (4.20). 

To summarise, if one has a Kahler metric with R =constant=4A, then one can 
choose to ascribe its Ricci curvature to that implied by the coupled Einstein-Maxwell 
equations (4.20), with the Maxwell field being (1/2e)P. Since condition (4.24) must 
hold, it follows that A must be positive. Note that if the metric is actually Einstein, 
Rab = Agab, then (4.22) and (4.23) are both zero, and so (4.24) no longer has to be 
satisfied. 

5. The spectra of Laplacians on Kahler manifolds 

In this section we consider the second-order wave operators for fields of various spins, 
and show how the special properties of Kahler manifolds give rise to certain relations 
between the eigenfunctions and eigenvalues of the operators. The operators to be 
considered here are the wave operators for spin-0 and spin-1 fields, for self-dual and 
anti-self-dual two-forms, the Lichnerowicz operator for spin 2 (i.e. metric perturba- 
tions), and the squared Dirac operator for spin A discussion of arbitrary spin 
operators may be found in Christensen and Duff (1979). The operators for spin 0, 
spin 1 and for two-forms will just be the Hodge-de Rham operators on zero-, one- 
and two-forms respectively. The isomorphism between spinors and antiholomorphic 
forms means that the squared Dirac operator is also of Hodge-de Rham type-in fact 
the operator 2(2+;*)' acting on antiholomorphic forms. The spin-2 operator acts on 
symmetric tracefree tensors ha*, and it turns out that these may be expressed as some 
linear combination of terms of the form wacGcb, where w is an anti-self-dual eigenfunc- 
tion and G = J, K or L (see (2.50), (2.51)). 

One can summarise the above in table 1. 
The probiem is thus essentially reduced to looking at Hodge-de Rham operators 

acting on A"', A'*', AO*' and A','. There is a complication in the case of spin 2 since 
the two-forms K and L are electrically charged, which means that the anti-self-dual 
eigenfunctions w which multiply them must have the opposite charge in order to make 
hab electrically neutral. There is also the question of the chargs of the spin-; eigenfunc- 
tions. One might at first think that the natural choice would be uncharged spin-; 
fields, but it turns out to be much more natura1 to consider spin-; fields of charge e 
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Table 1. 

Spin Corresponding exterior 
forms 

0 
$L 
:R 
1 
Anti-self-dual two-forms A Y  

2 A:"OG 
Self-dual two-forms 

(the same as the gauge-covariantly constant spinor uA) ,  which implies that the corres- 
ponding antiholomorphic forms are uncharged (see 92). This choice also has the 
merit that spinors of charge e can be defined in any Kahler manifold, whereas 
uncharged spinors can be defined only if the manifold admits a spin structure. 

The basic conclusion of this section will be that, provided the condition R = constant 
holds (except in the case of spin 2, where the stronger Einstein condition Rab = Ag,b 
must hold), all the eigenfunctions listed in the table can be constructed out of 
eigenfunctions of certain families of charged scalar eigenfunctions, and the eigenvalues 
of the operators are simply related to the charged scalar eigenvalues. 

We begin by introducing the following second-order differential operators: 

A = (D +D*)* = -(*D*D +D*D*), 

A+ = 2(D' + D+*)2 = -2(D'*D-* + *D-*D'), 

A- = 2(D-+D-*)2 = -2(D-*D+* + *D+*D-). 

(5.1) 

(5.2) 

(5.3) 
The first of these is the usual Hodge-de Rham Laplacian, whilst the latter two are 
the holomorphic and antiholomorphic Laplacians 2 0  and 2a discussed by Wells 
(1979). In each case we have made explicit the gauged derivatives D' and D- (see 
(2.47)) which reduce to 8 and a when acting on uncharged forms. The following 
properties are easily established: 

[*, AI = 0, *A+ = A-*, *A- = A'*, ED', A+] = [D-, A-] = 0. (5.4) 

When acting on uncharged forms, the three operators A, A+ and A- are all equal 
in a Kahler manifold, but on charged forms this is no longer in general true. However 
it turns out that in the case of two-forms, the operators are still equal even when 
acting on charged forms. Thus for all of the fields to be considered in this section, 
one can choose to work with whichever of the Laplacians is the most convenient. If 
one wanted to consider fields of different charges from those to be discussed here, 
one would have to distinguish between the different Laplacians. 

Given a (possibly charged) scalar eigenfunction q5 one can construct the following 
forms of higher degree: 

Aq5 = D-q5 or Bq5 = *D+(Lq5) E A".', ( 5 . 5 )  

Jq5 E A:', Lq5 E AoP2, (5 .6)  
1-* 

2 
Cq5 s-D'D-4 or Eq5 =D+*D+(Lq5) or G4 =D-*D-(Kd)c A?' (5.7) 
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where J, K and L are defined by equations (2.50), (2.51) (see § 2 for the definitions 
of A>' and A?'). It turns out that any eigenfunction of A, A+ or A- contained in A',', 

or A',' can be expressed in terms of these forms, and hence we see from table 
1 that any of the higher-spin eigenfunctions being considered here can be so construc- 
ted. (Eigenfunctions in A',' or A2*0 follow from those in A',' or A'" by complex 
conjugation.) Since J is uncharged, K has charge 2e and L has charge -2e, one has 
to choose the charge of 4 so as to produce eigenfunctions of the desired charge. 

A straightforward calculation shows that on charged scalar eigenfunctions 4, with 
charge ne, 

A'dn = -DaDQ4,, + tnR4,, A-4, = -DaDa4, -4nR4,. (5.8) 

Thus if 4, is an eigenfunction of -DQDQ with eigenvalue A,, 

-DQDAn = A n 4 m  (5.9) 
then 

= (An  + fnR A - 4 n  = ( A n  - b R  ) 4 n ,  (5.10) 

so provided R = constant, 4, is an eigenfunction of A' and A- also. 
To illustrate how the procedure for generating eigenfunctions of higher degree 

operates, consider the case of antiholomorphic one-forms, given by equation (5.5). 
For the first possibility one has 

(5.11) A-(A&) = A-D-40 = D-A-40 = Ao(A4o), 

and for the second 

A-(B42) = A-(*D+(L&)) = *D+LAf42 = (Az+$R)(B42). (5.12) 

Thus A4' and (provided R = 4A = constant) Bc#J~ are A',' eigenfunctions, with eigen- 
values A. and A2+2A respectively. 

The proof that these A'.' eigenfunctions are complete proceeds by inverting the 
above construction and reducing an arbitrary A',' eigenfunction down to eigen- 
functions and then regenerating the original one in A"'. To do this we introduce the 
adjoint operators A*, B*, defined via the Hodge inner product (2.8), i.e. A* is defined 
so that (4, A$) = (A*4, I j l ) ,  etc. One finds that A* and B* are given by 

A*T = *D+*q, B*q = *D-(K A q), (5.13) 

where 77 E A'*'. One can check that if q is a A'.' eigenfunction with eigenvalue /L, 
A-q = ELT, then 

= -(2/w)AA*v - (2p)-'BB*q, (5.14) 

proving that provided p # 0, an arbitrary A'.' eigenfunction can be expressed in terms 
of the eigenfunctions of equation ( 5 3 ,  i.e. Aq50 and B#Q for appropriate do and qb. 

A- WO) = A o ( J 4 o ) ,  A-(L42) = (A2 + 2ML42). (5.15) 

These, together with the complex conjugate KqL2 of L Q ~ ~ ,  generate all the self-dual 
eigenfunctions. The proof in this case is trivial since the relations are purely algebraic. 

For the case of the self-dual two-forms (5.6), if R = 4A constant then 

For the anti-self-dual two-forms (5.7) 
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The adjoints of the operators C, E and G are 

c*@ = *D+D-&, 

E*& = * D - ( K  A *D-w) ,  G*w = *D+(L  A *Dfw), 
(5.17) 

acting on w E A:.'. If w is an eigenfunction with eigenvalue p, then C * w ,  E*w and 
G * w  are all scalar eigenfunctions, and the following identity holds: 

w =p-2(8CC*w -EE*w -GG*w), (5.18) 

proving the completeness of the eigenfunctions (5.7) provided p # 0. 
The results so far have shown that all (uncharged) A".', AoS2 and A'*' eigenfunctions 

with non-zero eigenvalues can be constructed from certain (possibly charged) scalar 
eigenfunctions. Reference to table 1 shows that these cover the cases of spins 0, z 
and 1, and self-dual and anti-self-dual two-forms. Before moving on to discuss the 
rather more complicated spin-2 case, we consider one further slight subtlety. There 
can arise certain special cases in which one or more of the operators A, B, C, E or 
G annihilates the scalar eigenfunction #,, which it is applied to. This occurs if the 
eigenvalue A,, of takes certain special values. An obvious example is that the lowest 
uncharged eigenfunction, #o = constant, is annihilated by all the derivative operators. 
To investigate this, we note that for each of these operators, the operator followed 
by its adjoint, applied to a scalar eigenfunction, gives back an (eigenvalue dependent) 
multiple of the eigenfunction; e.g. A*AC$~ = Thus generically, denoting one 
of the operators by H, one has H*H# = a# for some eigenvalue dependent constant 
a, and so 

[/H*H4*1 = a  I,*j#l2*1. (5.19) 

1 

But by construction one can integrate the left-hand side by parts to give 

(5.20) 

and so Hq5 = 0 if and only if a = 0. Some straightforward calculations give the results 

A*A& = -$A&, B*B42= -2(A2+2A)42, (5.21) 

(5.22) 

Thus as well as (bo=constant being annihilated by A and C, if there is a #2 with 
A 2  = -211 (which can only happen if A <  0, since A,, cannot be negative), then it is 
annihilated by B and E. 

Turning now to spin 2, the starting point is to note that an arbitrary symmetric 
tracefree tensor hab may be expressed as 

(5.23) 

where W O ,  W +  and w -  are certain uniquely determined anti-self-dual two-forms of 
charge 0, +2e and -2e respectively. In fact, O : b  = -~Iachb]~, w:b = -&[achblC, w b  = 
-$LlachbIc, and one can verify by substitution of these into the right-hand side that 
equation (5.23) always holds. 

It turns out to be necessary to impose the Einstein condition Rab = Agab in order 
to construct spin-2 eigenfunctions from scalars, so we will assume this condition from 

C*C#O = ;A &o, E*E42= -(A2+21I)~#2, G*G#-2 = -(A2 + 2A)2#-2. 

0 hab = Jacw cb + Lacw :b Ka@ Lb 
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now on. The Lichnerowicz operator AL acting on hab is then 

hLhab = -ahab -2RacbdhCd 4- 2Ahab. (5.24) 

Since J, K and L are gauge-covariantly constant, it follows that if hab is an eigenfunction 
of AL then W O ,  U* are eigenfunctions of A-, and vice versa. If A-wo = pwo, then 

(5.25) 0 
AL(Jac0;b) = P((JacWcb), 

whilst if A-&+ = @U+, then 

AL(La&J:b) = (P 2A)(Lacw :b), (5.26) 

and similarly for the complex conjugate case, KacwCb. We have already described the 
construction of the complete set of uncharged anti-self-dual eigenfunctions W O ,  so it 
just remains to construct those of charge 2e, w + ;  the w -  then follow by complex 
conjugation. This is done in just the same way as in equation (5.7) except that now 
the scalar eigenfunctions are given charges greater by 2e than previously. Thus 

O + = C ~ ~  or E44 or G(bo. (5.27) 

Substituting the two-forms (5.27) into A-, one finds after some algebra 

A-(C42) = Az(C(bz), 

A-(G4o) = (Ao-~A)(G#Jo) (5.28) 

which when combined with (5.26) shows that these generate spin-2 eigenfunctions 
with eigenvalues A 2  + 211, A 4  + 8A and A. respectively. The complex conjugate eigen- 
functions w - similarly yield three families of spin-2 eigenfunctions with these eigen- 
values also. 

The proof of completeness of the spin-2 eigenfunctions is more complicated than 
for the lower spins. Clearly, since (5.23) is a purely algebraic relationship, it is 
equivalent to show that the anti-self-dual two-forms are complete, and as the 
uncharged ones w o  have already been shown to be complete, this leaves those of 
charge *2e. A straightforward calculation shows that for w +  (of charge 2e) equation 
(5.17) becomes 

A-(E44) = (A4 + 6N(E44), 

U +  = 2 c c * w + -  E E " w  - GG*w, (5.29) 
1 

p2-4A @(P - 2 N  P ( P  + 2 N  

where, as before, A-"' = ww+. Thus in general the charge-2e anti-self-dual eigenfunc- 
tions obtained from scalars are complete, the possible exceptions being those corres- 
ponding to zero modes of A-, or else modes with = *2A. Since A- is a non-negative 
operator, the cases ,U =2A and -211 can occur when A is positive or negative 
respectively. Referring to equation (5.26), we see that zero-eigenvalue two-forms 
generate spin-2 modes with AL = 2A. These are in fact zero modes of the operator 
describing the second variation of the Einstein action. It is not clear what is the 
significance of the apparent breakdown of the eigenfunction generation procedure 
when p = +2A. We will defer further discussion of these points until the next section. 

It remains to investigate which scalar eigenfunctions (b are annihilated by the 
operators C, E and G when constructing charge-2e two-forms. The analogue of 
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equations (5.22) in this charged case are 

and as before the vanishing of the coefficient on the right-hand side of one of these 
equations implies that the eigenfunction is annihilated by the corresponding operator. 

To conclude this section, we give a summary of the results obtained above, and a 
table of eigenvalues of the various second-order operators discussed. For each spin-: 
(left) and spin-$ (right) there are two families of eigenfunctions, one constructed from 
charge-zero scalars (bo  and one from charge-2e scalars d2; for spin 1 there are four 
families, two from q50 and two from 4*2; for each of self-dual and anti-self-dual 
two-forms there are three families, one from qL2; and for spin 2 
there are nine tracefree families, three from do, four from 4*2 and two from 4*4. 
The eigenvalues of these eigenfunctions are given in terms of the scalar eigenvalues 
in table 2. 

Table 2. 

Spin Eigenfunction Eigenvalue 

For spin $ the antiholomorphic exterior forms isomorphic to spin-$ (L) and spin-; (R) 
are listed (see table 1). For spin 2, the eigenfunctions listed in table 2 are the products 
of J, K or L with the anti-self-dual eigenfunctions; e.g. denotes the spin-2 
eigenfunction h,b given by h,b = Jac(C&Jcb. 

It is interesting to note that in all cases the eigenvalues of eigenfunctions formed 
from charge-0 scalars are Ao, from charge *2e scalars are h2+2A and from charge 
*4e scalars are h4 + 8A. The special cases in which the eigenfunctions in table 2 in 
fact vanish may be read off from equations (5.21), (5.22) and (5.30). Otherwise, apart 
from the case of zero modes and AL= *2A spin-2 modes, the eigenfunctions form 
complete sets, given that the scalar eigenfunctions do, qL2 and 4*4 are complete. 

Finally, we remark that all the derivations in this section may be performed instead 
using the two-component spinor formalism, and working with spinors directly in the 
case of spin $ (rather than the isomorphic antiholomorphic exterior form description 
used in this paper). This was discussed by Pope (1981b), in which it was also shown 
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that this eigenfunction generation procedure is a generalisation of that described in 
Hawking and Pope (1978a) in the case of half-flat metrics, which are the same as the 
case of A = 0 Einstein-Kahler metrics (i.e. Ricci-flat Kahler metrics). 

6. Zero modes 

We have seen from (5.14) and (5.18) that the eigenfunction construction does not 
work for zero modes for A',' and A?' forms, and in the case of spin 2 it also apparently 
fails for certain other special cases too. For A'.' and Aip1 on the other hand, the 
eigenfunctions are algebraically related to scalar eigenfunctions, and so the zero modes 
are obtainable from scalars in these cases. 

By definition, the number of A',' zero modes is h'.', the dimension of the 
cohomology class Ho*'(M, W) (see P 3). Furthermore, it follows by complex conjuga- 
tion that h'*'=h'.', sosince h'*'+h1''=b1, 

(6.1) hO.'=h'.O-' -zbi 

where bl is the first Betti number of M. Note that in a Kahler manifold bl must 
therefore be even. If M is simply connected then bl = 0 and there are no A'" zero 
modes. If M is an Einstein space, the Hodge-de Rham operator (5.1) on one-forms 
q is 

Aqa = --Oqa + (6.2) 

so if A > 0 then A > 0 and so in this case too there are no A',' zero modes. 

type is by,  the anti-self-dual contribution to the second Betti number (see (3.1 1)): 
The A?' forms are anti-self-dual two-forms, so the number of zero modes of this 

h?' = b i .  (6.3) 

The A'.' and A>' zero modes, together with A2,', the coniplex conjugate of A',', 

(6.4) 

constitute all the self-dual zero modes, and so 

2h'" + h>' = b:, 

where we have used h2*' = hoV2 . Now all A>' modes are given by Jq50 and so from 
(5.15) it follows that there is just one A>' zero mode, namely J itself, and so 

hi" = 1, hO*' = &(b: - 1). (6.5) 

Provided R = 4A = constant, all A',' modes are given by Lq5', and so it follows from 
(5.15) that A'*' zero modes are in 1-1 correspondence with.A2 = -2A charge-2e scalar 
eigenfunctions. But A, a 0, so if A >  0 then hov2 = 0, and so by (6.5) b;  = 1. 

It is interesting to note that in an Einstein-Kahler space with A > 0 the arithmetic 
genus is therefore 

a=h'.'-h'.'+h',2=1-O+O=1, (6.6) 
and so from (3.15), x + r = 4 .  Combining this with (3.9), (3.18) and the fact that 
C: > 0 if A > 0, one arrives at the topological constraints 

3 ~ ~ s  11, 1 a r a - 7 ,  (6.7) 

for Einstein-Kahler spaces with A > 0. 
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The second variation of the gravitational action I = -(1/2~~) ],(R -2A)*1 around 
an Einstein background g,, is (e.g. Christensen and Duff 1980): 

2 1 
S I = -7 h’”A‘*’h,,*l, 

4 K  

where SgWy = h,, and h,, is the harmonic gauge 

The operator A(*) is given by 

A(*’ = AL - 2 A  (6.10) 

where AL is the Lichnerowicz operator (5.24). Equations (5.25) and (5.26) show that 
zero modes of A(*) are either of the form Jucw:b where w o  is an uncharged anti-self-dual 
eigenfunction with eigenvalue 2A, or else L a c w z b  or its complex conjugate, where w +  
is a charge-2e anti-self-dual zero mode. 

When A < 0, clearly only A(*) zero modes of the latter type can occur, because of 
the positivity of the Laplacian A, and there are 2 N  of them where N is the number 
of charge-2e anti-self-dual zero modes. They satisfy the gauge condition (6.9),  and 
correspond to infinitesimal deformations of the Einstein metric which leave the action 
invariant. 

When A > 0 the possibility exists that a zero mode of the type Jacw:b may occur, 
where Awo = 2Aw0. However such a mode, although a zero mode of A(*), does not 
satisfy the gauge condition (6 .9)  and so does not correspond to a genuine deformation 
of the metric which leaves the action invariant. As in the case A < 0, zero modes of 
the type Lacw:b can (in principle) occur. 

7. Zeta functions in Einstein-Kahler backgrounds 

The relations derived in 0 5 can be used to express the zeta function [(s) = XA,OA-S 
for the eigenvalues A of one of the higher-spin operators in terms of the zeta functions 
constructed from the appropriate scalar eigenvalues. One can then compare the 
higher-spin zeta function evaluated at s = 0 with the B4 coefficient occurring in the 
heat kernel expansion for the corresponding operator, thereby obtaining an indepen- 
dent check on the eigenvalue relations. 

Since l ( 0 )  is the regularised number of non-zero eigenvalues, whilst B4 includes 
also the number of zero modes, one has to be careful to allow for the zero modes 
when performing the comparison. One also has to take care to allow for the cases 
discussed in 0 5 in which a scalar eigenfunction is annihilated by one of the spin-raising 
operators, otherwise the expression derived for l (0 )  for the higher-spin wave operator 
will be overcounting by the number of occurrences of this phenomenon. Both these 
effects lead to B4 and [(O) disagreeing by a (finite) integer, so for example, even if 
one does not have information about the number of zero modes, one still obtains a 
useful check by comparing B4 and [(O) modulo the integers. 

Before computing zeta functions, we first consider the question of those scalar 
eigenfunctions which are annihilated by the spin-raising operators. Considering first 
the case of A’*’, equation (5.21) shows that this occurs if A. = 0 or if A 2  = -211. There 
is just one uncharged eigenfunction with A o = O ,  namely  constant. The case 
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A2 = -2A can only occur if ACO, since A, 3 0 .  In fact, the lower bound for charged 
eigenvalues can be sharpened somewhat by considering equations (5.8), with R = 4A. 
The operators Ai, A- are non-negative, so one has the inequality 

A n  3 /nAl, (7.1) 

D’4, = 0 or D-4, = 0. (7.2) 

with equality implying 

As was shown in 9 6, the number of A 2  = -2A scalar modes is hoy2. 
The situation is just the same for A:’, the anti-self-dual two-forms. Equation 

(5.22) shows that the method fails in the case of the single A o = O  uncharged scalar 
mode, and the hoV2 charge-2e modes with A 2 =  -2A. There is no problem for the 
self-dual two-forms, A’’’ and A)’, since these are obtained from scalars by purely 
algebraic operations. 

For spin 2, where we are assuming that Rab = Agab, equations (5.30) show that 
scalar eigenfunctions with eigenvalues A 0  = 0 or 2A, A Z  = *2A, and A 4  = -4A or -611 
are annihilated. Of these, the cases Az=f2A and A4=-4A correspond to the 
inequality (7.1) being saturated. We have already remarked that A. = 0 occurs once, 
and A 2  = -2A occurs hoS2 times. 

The case A0 = 2 4  which can of course occur only if A > 0, is of interest because 
such scalar eigenmodes are in 1-1 correspondence with the Killing vectors in the 
space. To see this, consider first the identity (assuming R a b  = Agab) 

2 1 I(v(,vb,112*1 = 1M[Va(A-2A)V, +(v,v“)2]*1. (7.3) 
M 

This shows that a divergence-free vector eigenfunction of A, with eigenvalue 2A, is 
a Killing vector. Now from table 2, bearing in mind - that A 2  3 21.41, if A > 0 the only 
vector modes with eigenvalue 2A are Ado and A&, with q50 being - an uncharged 
scalar eigenfunction with A. = 2A. Now from ( 5 . 5 )  A& =a&,, A h  = 840, and one 
can easily show that the only divergence-free combination is 6 -a)+, which in com- 
ponent notation corresponds to JabVb&. Thus the Killing vectors coincide with these 
eigenvectors, where A. = 211. It is not clear whether there is any particular significance 
to be attached to the cases A Z  = 211 or A4 = -4A or -611. In P2(C),  where one can 
calculate all the scalar eigenvalues explicitly, there is a decuplet of A 2  = 2A charge-2e 
scalar modes (Pope 1980). 

Turning now to the calculation of zeta functions for the higher-spin operators, one 
needs to evaluate sums of the form 

at s = 0 in terms of the zeta functions 6%) = BA is for the charge-ne scalar operators, 
in order to obtain expressions for l(0) for higher spins in terms of scalar zeta functions. 
To do this, one expands (7.4) in descending powers of A,,: 
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Now ['"'(s) has simple poles only, at s = 0, 1 and 2 (see e.g. Hawking 1977) so one 

(7.6) 
finds 

(7.7) 

1 2 2  ~ " ( 0 ,  k) = [ ' " ' (O) - kAs['"'(s + l ) l ,=o+~k A s[(")(s +2)),=0 
1 2 2  = B4(n) - khBz(n) +yk A B d n )  - E", 

where Bo(n), Bz(n)  and B4(n) are the first three coefficients in the heat kernel expansion 
for the charge-ne scalar operator. E" is an integer which corrects for the overcounting 
by the number of zero modes. The three cases of interest will be ~ ~ ( 0 ,  0), for which 
E ~ =  1 since B4(0) includes the A o = O  zero mode, v2(0,2) for which e 2 =  h0*' since 
B4(2) includes the hoS2 A 2  = -2A modes, and v4(0,8). The last of these arises only in 
the spin-2 zeta function, where lack of information about the numbers of the special 
modes discussed earlier will force us to work modulo the integers. It is therefore 
sufficient for q4(0,8) merely to note that c4 is an integer. 

The B, coefficients for the charged scalar operator -D"D, may be found in, for 
example, Christensen and Duff (1979), where the commutator term Yab = [V,, v b ]  is 
modified by the replacement Va + Va - ienA,, and hence Yab + Yab - ienF,b. In an 
Einstein background Fab = (A/2e)Jab, and so 

AV 12 - 5n2 
&(n) = - ~ 4 ( n )  = hx + 480 c:, V 

Bo(n) = - 
1 6 ~ ~ '  2 4 ~ "  (7.8) 

where V = j.1 is the volume of the space, x is the Euler number, and C: is the first 
Chern number. In obtaining (7.8) use has been made of the equation 

C: = A2V/2.rr2, (7.9) 

which follows from (3.7) when Rab = Agab. Thus from (7.7), 

~ " ( 0 ,  k) = &(30k2 -40k - 5n2 + 12)C: +hx - E,,. (7.10) 

We can now apply this formula to the various higher-spin operators. 
T h E a s e s  of spin i(L) and spin 1 are equivalent, since S-G A'" and A' = 

Ao,1+A091, so we shall just consider one of them; the spin-1 case. Referring to table 
2, the spin-1 zeta function is given by 

(7.11) 

(7.12) 

(7.13) 

This is to be compared with the B4 coefficient for a spin-1 field in an Einstein 
background, which may be found in Christensen and Duff (1979). On using the 
relation (7.9) this becomes 

(7.14) 

Now we should have B4(spin 1) = [l(0)+bl, since the first Betti number b1 (=2hoV1) 
is equal to the number of vector zero modes. From (7.13) one finds 

[1(O)+b1= &x +gc: -2(1- + h0S2), (7.15) 

and so since hoV0 = bo = 1, the quantity in parentheses is just the arithmetic genus 
(3.14). On using (3.15) one finds that (7.15) is indeed equal to (7.14). 

 spin 1) = -%x + &C?. 
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For A:, the self-dual two-forms, one sees from table 2 that the zeta function C+(s) 

(7.16) 

On the other hand, from Christensen and Duff (1979) the B4 coefficient for self-dual 
two-forms in an Einstein-Kahler background is 

B4(+) = &jx +i%c:. (7.17) 

In this case the number of zero modes is 6;, which by (6.5) is equal to 1 +2h0*’, and 
indeed adding this to (7.16) does give the required result, (7.17). 

evaluated at s = 0 is 

g+(o) = 770(0,0) + 2772(0,2) = &ix +%c: - 1 - 2h0’2. 

For A? the non-zero eigenvalues are the same as A:, so 

f - ( O )  = Bx +sc: - 1 -2hOS2 (7.18) 

as for A:. From Christensen and Duff (1979) 

B4(-)=%x-&C:. (7.19) 

The number of anti-self-dual zero modes is 6; = 6: - T = 1 + 2hoY2 - T, and adding this 
to (7.18) does indeed give (7.19). 

For spin 2 we shall merely check the agreement between the zeta function and 
the B4 coefficient modulo the integzrs, since there seems not to be any way of 
independently determining the number of scalar modes annihilated by the spin raising 
operators. From table 2, one has for tracefree spin-2 fields 

mod Z. (7.20) 52(0) = 3770(0,0) + 477~(0,2) + 2 ~ d O , 8 )  = &X + TKI 
On the other hand, from Christensen and Duff (1979) the spin-2 B4 coefficient is 

269 2 

 spin 2) = %x + % cf. (7.21) 

The difference B4(spin 2) - C2(O)  = 2x - 5 C: which is indeed an integer. In examples 
where the eigenvalues can be calculated explicitly, one can check the spin-2 case 
including the zero modes, and one finds exact agreement. This was done in Pope 
(1980) for P2(C); a similar calculation in S2 x S 2  also yields exact agreement. 

8. Conclusion 

We have seen how the special properties of Kahler manifolds result in certain 
simplifications of some of the calculations in which one is interested in quantum gravity 
or quantum field theory in a curved space background; in particular, the second-order 
wave operators for fields of different spins are related in a special way. These relations 
depend upon the crucial property of Kahler manifolds that there exists a charged 
gauge-covariantly constant spinor, by means of which one may associate right- and 
left-handed spinors with the bundles of even and odd antiholomorphic exterior forms. 

An obvious application of some of these ideas would be to the various supergravity 
models, extending the idea developed by Hawking and Pope (1978a) in the case of 
half-flat background geometries. Unfortunately the calculations become much more 
complicated in the present case, because of the fact that it is natural ‘to work with 
charged fermion fields, coupled to a non-zero background electromagnetic field. One 
is thus obliged to quantise around a non-trivial Einstein-Maxwell background, and 
so the operators describing the second variation of the supergravity action are much 
more complicated than in the pure Einstein case; for example the Einstein-Maxwell 
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part now involves off -diagonal terms coupling metric and Maxwell fluctuations. One 
might also feel that the necessity of the background Maxwell field makes the model 
somewhat artificial. On the other hand, in the case of manifolds which do not admit 
an ordinary spin structure, one is forced to introduce some such background gauge 
field in order to be able to define spinors consistently at all (e.g. Hawking and Pope 
1 978 b) . 

In the case of Kahler manifolds with spin structure, one could instead use the 
methods developed in this paper to construct uncharged fermion eigenfunctions, in 
which case there would be no need to have a background Maxwell field in the 
supergravity models. This would be achieved by giving different electric charges to 
the scalar eigenfunctions used for constructing the fermion eigenfunctions, in order 
to make the fermions uncharged. However, this would mean that whereas boson 
fields would all come from scalars of charge 0, *2e, *4e, the fermions would come 
from scalars of charge *e ,  *3e,  * 5 e ,  and so there would appear to be no chance of 
the boson eigenvalues cancelling against fermion eigenvalues in the functional integral 
at the one-loop level, in the manner found by Hawking and Pope (1978a). One would 
at least however have reduced the problem to one involving only scalar eigenfunctions. 

Regarded purely as a mathematical tool, the technique of reducing higher-spin 
fields down to charged scalar fields can be extremely useful for simplifying calculations, 
as was demonstrated in Pope (1980) in the case of P2(@) ,  It could also be useful for 
calculating higher-spin Green functions. 
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